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Universality in three dimensional random-field ground states
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Abstract. We investigate the critical behavior of three-dimensional random-field Ising systems with both
Gauss and bimodal distribution of random fields and additional the three-dimensional diluted Ising antifer-
romagnet in an external field. These models are expected to be in the same universality class. We use exact
ground-state calculations with an integer optimization algorithm and by a finite-size scaling analysis we
calculate the critical exponents ν, β, and γ̄. While the random-field model with Gauss distribution of ran-
dom fields and the diluted antiferromagnet appear to be in same universality class, the critical exponents
of the random-field model with bimodal distribution of random fields seem to be significantly different.

PACS. 05.70.Jk Critical point phenomena – 64.60.Fr Equilibrium properties near critical points, critical
exponents – 75.10.Hk Classical spin models – 75.50.Lk Spin glasses and other random magnets

Above two dimensions, the ferromagnetic random-field
Ising model (RFIM) is long-range ordered for low temper-
atures and small random fields as was proven by Imbrie [1]
and also by Bricmont and Kupiainen [2]. For larger fields
the system develops a frozen domain state [3] which has
been shown to have a complex, fractal structure [4]. It is
now widely believed that there is a second order phase
transition from the ordered to the disordered phase in
appropriate dimensions although in three dimensions a
complete set of values of the critical exponents fulfilling
the predicted set of scaling relations [5–7] could still not
be established. E.g. the value of α is still controversially
discussed [8].

For the replica-symmetric mean-field solution [9] it was
found that the critical behavior of the RFIM depends
on the kind of distribution of random fields. Later, also
for random-field systems on the Bethe-lattice [10] it was
demonstrated that the critical behavior depends on the
distribution of random fields. Two recent letters [11,12]
were addressed to the question whether this is also true in
lower dimensions. Swift et al. [11] found clearly different
critical behavior for random-field systems with a Gauss-
distribution (G-RFIM) on the one hand and a bimodal
distribution (B-RFIM) on the other hand in four dimen-
sions. They could not find a clear distinction in three di-
mensions. Here, it were Anglès d’Auriac and Sourlas [12]
who found differences for the critical behavior of the two
systems mentioned above. Especially the values of the cor-
relation length exponent ν they found to be significantly
different.
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The most prominent experimental realization of a
RFIM is often asserted to be the diluted Ising antifer-
romagnet in a field (DAFF) (for an overview see [13,14]).
This system is thought to be in the same universality class
as the RFIM [15,16] but if the concept of universality is
violated for random-field models the question arises what
values the critical exponents of a DAFF have. Therefore,
in this work we investigate these three types of random-
field systems mentioned above in three dimensions and we
determine at a time three of the critical exponents, ν, β
and γ̄ numerically in order to test if there is possibly a vi-
olation of universality. Especially the DAFF is examined
the first time in this way at all.

The Hamiltonian of the RFIM in units of the exchange
coupling constant is

H = −
∑
〈i,j〉

σiσj −
∑
i

Biσi. (1)

The first sum is over the ferromagnetic nearest-neighbor
interactions and the spin variables σi are ± 1. The ran-
dom fields Bi are taken either from a Gauss-probability
distribution P (Bi) ∼ exp(−(Bi/∆)2/2) or from a bimodal
distribution Bi = ±∆. In either distributions ∆ scales the
strength of the random field.

The corresponding Hamiltonian of the DAFF is

H =
∑
〈i,j〉

εiσiεjσj −∆
∑
i

εiσi (2)

where we have now an antiferromagnetic nearest neighbor
coupling and the εi = 0, 1 represent the dilution. The ho-
mogenous magnetic field ∆ breaks the antiferromagnetic
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long-range order and in connection with the dilution it
acts as random field [15,16]. Note, that for the DAFF
the value of the critical ∆ depends on the dilution of the
system (see also [17] for a sketch of the phase diagram
of the DAFF).

As was shown by renormalization group arguments [5,
18], the three-dimensional RFIM has a zero temperature
fixed point at a finite value ∆c of the random-field width
and the temperature T is an irrelevant variable. Hence,
we can use exact ground-state calculations to investigate
the critical behavior of our systems at zero temperature.

For our numerical investigation we used a simple cu-
bic lattice with periodical boundary conditions and lin-
ear lattice sizes varying from L = 10 to L = 80 for the
RFIMs and from L = 20 to L = 120 for the DAFF. We
used well-known algorithms from graph theory [19–21] to
calculate the ground state of a system at given field ∆.
The calculation works by transforming the system into a
network [22], and calculating the maximum flow in poly-
nomial time [23,24]1.

This method works only for systems without bond-
frustration, so that spin glasses cannot be treated in this
way. For most of those systems only algorithms with ex-
ponential time complexity are known, for example the
Branch-and-Cut method [25,26]. For readers interested in
the field we give some additional informations: Only for
the special case of the two-dimensional spin glass with
periodic boundary conditions in no more than one direc-
tion and without external field also a polynomial time
algorithm is known [27]. For the general case the sim-
plest method works by enumerating all possible states
and has obviously an exponential time complexity. Even
a system size of 43 is too large. Branch-and-Cut works
by rewriting the problem as a linear optimization prob-
lem with an additional set of inequalities which must
hold for the solution. Since not all inequalities are known
a priori the method iteratively solves the linear problem,
looks for inequalities which are violated, and adds them
to the set until the solution is found. Since the num-
ber of inequalities grows exponentially with the system
size the same holds for the computation time of the algo-
rithm. Here only small systems up to 83 are feasible. For
the spin-glass problem approximation methods like com-
binations of Cluster-exact approximation [28] and genetic
algorithms [29,30] are more efficient: true ground states
[31] up to size 143 can be calculated [32]. The basic idea
of Cluster-exact approximation is to build sub-clusters of
spins which exhibit no bond-frustration. For these sub-
clusters the graph-theoretical methods used here can be
applied, which leads to a decrease of the energy in the to-
tal system. Genetic algorithms work by minimizing many
configurations of a system in parallel, keeping only those
which have lower energies and creating new configurations

1 Implementation details: We used Tarjan’s wave algorithm
together with the heuristic speed-ups of Träff. In the construc-
tion of the level graph we allowed not only edges (v,w) with
level (w) = level (v)+1, but also all edges (v, t) where t is the
sink. For this measure, we observed an additional speed-up of
roughly factor 2 for the systems we calculated.

Fig. 1. Maximum and minimum of the absolute value of the
staggered magnetization of a DAFF (L = 16, dilution 50%)
versus field.

by combining already existing configurations and flipping
some spins randomly.

We now turn back to the RFIM and the DAFF. All de-
generate ground states of the system are given [33] by a set
of clusters and a binary relation defined on it. Each clus-
ter is a set of antiferromagnetically (DAFF) respectively
ferromagnetically (RFIM) ordered spins. These spins are
not necessarily spatially connected. Two of the clusters
hold the spins which have in all degenerate ground states
always the same orientation. The relation describes the
conditions which must hold between the orientations of
the other clusters in different ground states. Using this
description all degenerate ground states can be analyzed.
Since all systems have a finite number of spins the ground
state is a stepwise constant function of the field and, hence,
this holds for the measurable quantities as well. The steps
occur whenever a cluster of spins flips it orientation. In
[34] it was shown that for the DAFF more than 95% of
the spins do not contribute to the degeneracy. For the B-
RFIM even 98% of the spins are frozen in different ground
states. This is true for all fields ∆ except of the finite num-
ber of fields where the ground state changes, i.e. a jump
in a measured quantity of a single system occurs.

From the spin configurations of the ground state, we
can calculate the magnetization m = 1

L3

∑
i σi (respec-

tively staggered magnetization for the DAFF) for a given
sample. Due to the degeneracy of the ground states men-
tioned above the (staggered) magnetization of a certain
system does not inevitably have a unique value. Instead,
different degenerate ground states of a given system may
have different magnetization values although the energy of
the different ground states is the same, of course. Never-
theless, with our algorithm we are especially able to find
exactly the maximum and the minimum value of m. In
Figure 1 we show the maximum and the minimum ab-
solute value of the staggered magnetization of one single
L = 16 DAFF sample. The dilution of the DAFF is 50%.
As discussed above, m is a stepwise constant function. It
shows strong discontinuities (jumps) at integer values n
of the field ∆. These jumps are due to the fact that all
the single spins flip at ∆ = n which are antiparallel to the
field and, hence, have a local field of n generated by their
n neighbors. This effect has nothing to do with the critical
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Fig. 2. Averaged maximum and minimum absolute values of
the staggered magnetization versus field for the DAFF (dilu-
tion 55%, different system sizes).

behavior but it hinders the scaling analysis. Therefore, for
the scaling analysis of the DAFF we used a higher dilu-
tion such that ∆c is well below 1 and additionally we used
larger lattice sizes such that the critical region is narrow
enough so that all data we need are for values of ∆ < 1.

Taking the average over different disorder configura-
tions we can calculate the order parameter M = [|m|]
and the disconnected susceptibility χdis = L3

[
m2
]
. Here,

the square brackets denote an average taken over up to
180 disorder configuration for the larger system sizes and
6400 disorder configurations for the smaller systems, also
depending on how close the random field strength ∆ is to
the critical one.

For Figure 2 we calculated the average of all maxi-
mum values as well as the average of all minimum values
of m. Although these values differ significantly we checked
that our results do not depend on whether we take the
maximum, the minimum or an average value of the differ-
ent occurring (staggered) magnetization values as far as
the scaling behavior of the order parameter is concerned.
Hence, we decided to neglect the effect of degeneracy and
the results presented here for the order parameter and the
disconnected susceptibility are taken from the maximum
values of m. Note, that the considerations above do not
concern the G-RFIM which exhibits a degeneracy of two
only at the jumps, elsewhere it is not degenerate at all.

Apart from that Figure 2 demonstrates that for a dilu-
tion of 55% ∆c is well below 1 so that all data we need for
a finite size analysis are smooth functions without steps.

In the following analysis we use the finite size scaling
relations

M = L−β/νM̃
(

(∆−∆c)L
1/ν
)

(3)

for the order parameter and

χdis = Lγ̄/νχ̃
(

(∆−∆c)L
1/ν
)

(4)

for the disconnected susceptibility. Figure 3 shows the cor-
responding scaling plots for the data of the G-RFIM.

Since both quantities, M and χdis should have the
same critical field and the same correlation length ex-
ponent we adjusted ∆c and ν for both scaling plots at

Fig. 3. Scaling plot of the magnetization and the suscepti-
bility for the G-RFIM using ∆c = 2.29, ν = 1.19, β = 0.02,
and γ̄ = 3.5.

Fig. 4. Scaling plot of the magnetization and the suscepti-
bility for the B-RFIM using ∆c = 2.20, ν = 1.67, β = 0.0,
and γ̄ = 5.0.

the same time. From this procedure it follows ∆c =
2.29 ± 0.04, ν = 1.19 ± 0.08, β = 0.02 ± 0.01, and
γ̄ = 3.5 ± 0.5. These are values which are not surprising
and in agreement with most of the previous work. The
error-bars are estimated from the finite-size scaling.

Figure 4 shows the same scaling plots for the data of
the B-RFIM. From the scaling it follows ∆c = 2.20±0.02,



108 The European Physical Journal B

Fig. 5. Scaling plot of the staggered magnetization and the
corresponding susceptibility for the DAFF using ∆c = 0.62,
ν = 1.14, β = 0.02, and γ̄ = 3.4. The unscaled data are also
shown in Figure 2.

Fig. 6. Scaling plot of the magnetization with the data of the
B-RFIM but with the exponents of the G-RFIM.

ν = 1.67± 0.11, β = 0.0± 0.02, and γ̄ = 5.0± 0.4. These
values of the critical exponents differ significantly from
those of the G-RFIM suggesting that the two models G-
RFIM and B-RFIM are not in the same universality class.
We will discuss this later in more detail. First we turn to
the analysis of the data of the DAFF.

Performing the same analysis as before for the data
of the DAFF results in Figure 5. Here we obtain ∆c =
0.62 ± 0.03, ν = 1.14 ± 0.10, β = 0.02 ± 0.01, and γ̄ =
3.4 ± 0.4. These values are in good agreement with the
critical exponents we found for the G-RFIM.

To prove even more clearly that the data of the B-
RFIM cannot be scaled with the exponents of the DAFF
or the G-RFIM we show in Figure 6 data of the B-RFIM
which are scaled with the exponents of the G-RFIM and

∆c is best-fitted. Comparing this figure with Figure 4 one
can see that the data collapse is clearly worse.

The following table summarizes all results we extracted
from our finite size scaling analysis.

ν β γ̄ ∆c

G-RFIM 1.19±0.08 0.02±0.01 3.5±0.5 2.29±0.04

B-RFIM 1.67±0.11 0.0±0.02 5.0±0.4 2.20±0.02

DAFF 1.14±0.10 0.02±0.01 3.4±0.4 0.62±0.03

To summarize, the values we determined for the crit-
ical exponents ν, β and γ̄ of the three-dimensional G-
RFIM are roughly in agreement with the previous numer-
ical works [4,35–37]. Small deviations – as far as they exist
– may be due to the smaller system sizes used in earlier
numerical investigations or due to the problem of equili-
bration of these highly disordered systems in the case of
Monte-Carlo work.

The values for the critical exponents of the DAFF
which we determined here for the first time within the
framework of exact ground-state calculations agree within
the error bars with those of the G-RFIM confirming that
DAFF and G-RFIM belong to the same universality class
[15,16]. Also, the value of the exponents ν and γ̄ agree
reasonably with experimental measurements [14].

Interestingly the values for the critical exponents of
the B-RFIM deviate from those of G-RFIM and DAFF.
This result as well as the values of ν are in agreement with
previous numerical work [12,38]. The fact that β is zero
may suggest that the phase transition is of first order as
it is the case for the replica-symmetric mean-field solution
[9]. It should be noted, however, that it was shown by
Mezard [39] that there is replica symmetry breaking for
the mean field solution of a random-field model with m-
component spins in the limit of large m. In [12] it was also
concluded from the exact ground-state calculations that
for the three-dimensional B-RFIM the phase transition is
of first order but on the other hand real space renormaliza-
tion yielded deviating results concerning the order of the
phase transition (see e.g. [40]). Also, the value of ν is even
higher here. Whether the transition in the D-RFIM is of
first order or not cannot be judged by our simulations.

We should mention that our results are based on a
finite-size scaling analysis and in principle there is the pos-
sibility of relevant logarithmic correction to scaling which
possibly could also explain the deviations of the scaling
exponents of the B-RFIM from the exponents of the G-
RFIM and the DAFF. However, such corrections to scal-
ing are expected for systems at the upper or lower critical
dimension of a system, a case which we do not consider
here.

The modified hyperscaling-relation [41] which can be
written in the form γ̄ = Dν − 2β where D is the spa-
tial dimension (D = 3 in our case) is fulfilled by both
sets of exponents.
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